19. The Physical Properties of Some Aliphatic Compounds.

By S. A. Mumford and J. W. C. Phillips.

Measurements are reported of the densities, refractive indices, surface tensions, and viscosities, at 20° and 25° whenever practicable, of a number of aliphatic compounds of different types.

The results are briefly discussed from the standpoint of the parachor thesis previously advanced (J., 1929, 2112).

In the decade following publication of a paper on the evaluation and interpretation of parachors ($J ., 1929,2112$) the authors undertook, as opportunity arose, the determination of the surface tension and other physical properties of a number of aliphatic compounds, with the object of obtaining further evidence in support of the thesis then advanced, namely that the CH_{2} parachor increment of 39 units originally adopted by Sugden ($J ., 1924,125,1177$) was too small and should be replaced by one of 40 units, and that constitutive deviations from parachor additivity
could be accounted for by the systematic introduction of "strain constants." The investigation was interrupted by the war, and as circumstances have since arisen which make it impossible to resume the collaboration, it has been thought desirable to place on record the results obtained up to 1939.

The original aim of the investigation was twofold : (i) to obtain a representative value for the CH_{2} increment by examining the average parachor increase over a considerable CH_{2} interval in a number of different aliphatic series; and (ii) to obtain more detailed information on the magnitude of the parachor defect associated with accumulation of negative groups in a molecule, particularly on one carbon atom. With the first object in view, a series of n-hexadecyl compounds was prepared, and their parachors, determined at uniform temperature as far as practicable, were compared with those of the corresponding n-butyl derivatives. Later, examination was made of a number of intermediate members in some of the series, to check the atomic or group constants concerned. The second aim of the investigation involved measurement of the parachors of a number of polyhalogenated hydrocarbons, ethers, and sulphides, and of a series of alkyl mono-, di-, and tri-chloroacetates, and $\alpha \omega$-dihalogeno- and -di-carbethoxy-alkanes.

Experimental.

Many of the compounds were purified from commercially available materials (generally from Messrs. British Drug Houses or Schering-Kahlbaum). As regards the others, the methods of preparation employed were those in general use. Thus, the n-alkyl halides were prepared from the corresponding purified alcohols by treatment with the requisite phosphorus halide. (In the case of the n-amyl compounds, the alcohol was synthesised from purified n-butyl bromide, which was also the starting point for the preparation of synthetic n-valeric acid.) The chlorinated esters were obtained by esterification of the appropriate acid with the requisite purified alcohol, and the alkyl 2-chloroethyl ethers by the action of methyl or ethyl sulphate on ethylene chlorohydrin. $2: 2^{\prime}$-Dichlorodiethyl ether was prepared in a manner analogous to that used by Kamm and Waldo (J. Amer. Chem. Soc., 1921, 43, 2223), and pentachlorodiethyl ether by treating the condensation product of chloral and ethylene chlorohydrin with phosphorus pentachloride (Henry, Ber., 1874, 7, 763). Tetra- and penta-methylene dichloride were prepared from adipamide and piperidine, respectively, by the method of von Braun (Ber., 1905, 38, 2340 ; 1906, 39, 4119). The n-alkyl sulphides were obtained by the action of sodium sulphide on the appropriate alkyl bromide, and 2-chlorodiethyl sulphide by the action of thionyl chloride on the condensation product of sodium thioethoxide and ethylene chlorohydrin (Mayer, Annalen, 1877, 240, 310). All the products were purified to constant properties by repeated fractionation through a Young column. The preparation of the n-hexadecyl compounds and of the polychlorinated sulphides has already been reported ($J ., 1931$, 1732 ; 1929, 535). See also Rec. Trav. chim., 1933, 52, 175, 181, and J., 1934, 1657 for the preparation of the higher ethyl esters, alcohols, and acetates.

Refractive indices were measured, at 20° whenever possible, with a calibrated Abbé refractometer. The other physical properties were determined at two temperatures (20° and 25° where practicable), the values quoted being the means of at least two determinations, made with different apparatus, at each temperature. The densities were determined with water-calibrated specific-gravity bottles, all weighings being reduced to a vacuum; the surface tensions were measured by Sugden's modification of the maximum bubble-pressure method (J., 1922, 121, 860), using bubblers calibrated with pure benzene (f.p. 5.5°, b. p. $80.2^{\circ}, d_{4}^{20} 0.8790, n_{D}^{20} 1.5012$), taking $\gamma_{20}=28.88$ dynes $/ \mathrm{cm}$.; the viscosities were determined in small Ostwald-type viscometers conforming in general characteristics to the standards laid down in British Standard Specification No. 188-1929, and calibrated with water and/or standard sugar solutions.

			U						
Compound.	F. p.	B. p. (760 mm . except where stated).	t.	d_{4}^{t}.	$n_{\text {d }}^{\text {d }}$.	$\left.{ }^{2} R\right]_{\mathbf{D}}$.	Surface tension (dynes/ cm.)	Parachor.	Viscosity (centipoises)
- : 5-Dimethylhexane	-	$109.2{ }^{\circ}$	$\begin{aligned} & 20^{\circ} \\ & 25 \end{aligned}$	$\begin{aligned} & 0 \cdot 6994 \\ & 0 \cdot 6959 \end{aligned}$	$1 \cdot 3933$	38.98	$\begin{aligned} & 19.9 \\ & 19.4 \end{aligned}$	$\begin{aligned} & 344 \cdot 7 \\ & 344 \cdot 2 \end{aligned}$	$\begin{aligned} & 0.485 \\ & 0.456 \end{aligned}$
n-Decane	-	173.3	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.7307 \\ & 0.7270 \end{aligned}$	1.4116	$48 \cdot 37$	$\begin{aligned} & 24 \cdot 0 \\ & 23.5 \end{aligned}$	$\begin{aligned} & 430 \cdot 8 \\ & 430 \cdot 6 \end{aligned}$	$\begin{aligned} & 0.920 \\ & 0.855 \end{aligned}$
n-Hexadecane	$17.6{ }^{\circ}$	$285 \cdot 8$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.7746 \\ & 0.7712 \end{aligned}$	1.4350	$76 \cdot 22$	$\begin{aligned} & 27 \cdot 8 \\ & 27 \cdot 35 \end{aligned}$	$\begin{aligned} & 670 \cdot 7 \\ & 670 \cdot 9 \end{aligned}$	$\begin{aligned} & 3 \cdot 53 \\ & 3 \cdot 10 \end{aligned}$
n-Hexadec-1-ene	-	$\begin{gathered} 159 \cdot 5 \\ (21 \mathrm{~mm} .) \end{gathered}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.7825 \\ & 0.7792 \end{aligned}$	1.4428	75.95	$\begin{aligned} & 27.9 \\ & 27 \cdot 45 \end{aligned}$	$\begin{aligned} & 658 \cdot 7 \\ & 658.8 \end{aligned}$	$\begin{aligned} & 3 \cdot 09 \\ & 2 \cdot 76 \end{aligned}$
n-Propyl chloride	-	$46 \cdot 5$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.8890 \\ & 0.8830 \end{aligned}$	$1 \cdot 3900$	20.94	$\frac{22 \cdot 15}{21 \cdot 5}$	$\begin{aligned} & 191.6 \\ & 191.5 \end{aligned}$	$\begin{aligned} & 0.355 \\ & 0.337 \end{aligned}$
n-Butyl chloride	-	$78 \cdot 4$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.8866 \\ & 0.8811 \end{aligned}$	1.4021	$25 \cdot 42$	$\begin{aligned} & 23 \cdot 75 \\ & 23 \cdot 1 \end{aligned}$	$\begin{aligned} & 230 \cdot 4 \\ & 230 \cdot 2 \end{aligned}$	$\begin{aligned} & 0.450 \\ & 0.427 \end{aligned}$
isoButyl chloride	-	$68 \cdot 4$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.8780 \\ & 0.8725 \end{aligned}$	$1 \cdot 3978$	$\underline{25 \cdot 42}$	$\begin{aligned} & 21.95 \\ & 21.4 \end{aligned}$	$\begin{aligned} & 228 \cdot 1 \\ & 228 \cdot 1 \end{aligned}$	$\begin{aligned} & 0.457 \\ & 0.431 \end{aligned}$

Results (continued).

Compound.	F. p.	B. p. (760 mm . except where stated).	t.	${ }_{4}^{t}$.	$n_{\text {d }}^{\text {t }}$.	$\left.{ }^{[R}\right]_{\text {d }}$.	Surface tension (dynes/ cm.).	Parachor.	Viscosity (centipoises)
n-Amyl chloride	-	107.9°	20°	$0 \cdot 8840$	1.4125	$30 \cdot 02$	$25 \cdot 15$	269.9	0.580
			25	$0 \cdot 8795$		-	24.55	269.7	$0 \cdot 547$
tert.-Amyl chloride	-	$85 \cdot 6$	20	0.8659	1.4050	$30 \cdot 16$	22.3	267.4	0.599
			25	$0 \cdot 8612$			21.8	$267 \cdot 3$	0.560
n-Hexyl chloride	-	$134 \cdot 3$	20	0.8790	1.4195	34-67	$26 \cdot 15$	$310 \cdot 2$	0.743
			25	0.8745			$25 \cdot 55$	$310 \cdot 0$	$0 \cdot 696$
n-Heptyl chloride	-	$160 \cdot 0$	20	0.8759	$1 \cdot 4255$	$39 \cdot 33$	26.9	349.9	0.956
			25	0.8715			26.35	349.9	$0 \cdot 890$
n-Octyl chloride	-	$183 \cdot 8$	20	0.8735	1.4298	43.93	27.65	$390 \cdot 1$	1.23
			25	$0 \cdot 8695$	-	-	$27 \cdot 15$	$390 \cdot 1$	$1 \cdot 135$
sec.-Octyl chloride	-	171.9	20	$0 \cdot 8660$	1.4283	44-17	26.4	388.9	1.055
			25	$0 \cdot 8616$	-	-	25.9	389.1	0.973
n-Hexadecyl chloride	a $7 \cdot 4^{\circ}$	195	20	$0 \cdot 8649$	$1 \cdot 4495$	80.93	$31 \cdot 1$	711.8	6.34
	$\beta 12 \cdot 1$	(22.5 mm .)	25	0.8616	-	-	$30 \cdot 6$	711.7	$5 \cdot 51$
Allyl chloride	-	$45 \cdot 0$	20	0.9349	1.4165	20.56	$23 \cdot 7$	$180 \cdot 5$	$0 \cdot 347$
			25	0.9290		-	$23 \cdot 1$	$180 \cdot 5$	$0 \cdot 331$
Chlorobenzene	-	$131 \cdot 3$	20	1-1065	1.5246	31-14	33.25	$244 \cdot 1$	$0 \cdot 801$
			25	1-1013			$32 \cdot 65$	$244 \cdot 1$	0.756
Benzyl chloride	-	67	20	1.0993	1.5391	36.06	$37 \cdot 65$	$285 \cdot 1$	1.40
		(14 mm .)	25	1.0945		-	36.95	$285 \cdot 0$	$1 \cdot 29$
Ethyl bromide	-	38.2	20	$1 \cdot 4612$	$1 \cdot 4242$	$19 \cdot 04$	$24 \cdot 1$	$165 \cdot 2$	$0 \cdot 397$
			25	$1 \cdot 4515$	-	-	$23 \cdot 45$	165.2	$0 \cdot 379$
isoPropyl bromide	-	$59 \cdot 4$	20	$1 \cdot 3096$	1.4251	$24 \cdot 02$	$23 \cdot 1$	205.9	$0 \cdot 487$
			25	$1 \cdot 3017$	-	-	$22 \cdot 5$	$205 \cdot 9$	$0 \cdot 463$
n-Butyl bromide	-	101.5	20	1.2758	1-4397	28.28	$\underline{26.6}$	$243 \cdot 9$	$0 \cdot 633$
			25	$1 \cdot 2687$	-	-	26.0	$243 \cdot 8$	0.597
isoButyl bromide	-	$91 \cdot 1$	20	1.2641	$1 \cdot 4362$	28.34	24.75	241.5	$0 \cdot 637$
			25	1.2568			$24 \cdot 1$	241.7	$0 \cdot 601$
n-Amyl bromide	-	129.4	20	1.2190	1.4443	32.93	27.35	$283 \cdot 3$	$0 \cdot 803$
			25	1.2132	-	-	26.8	283.2	$0 \cdot 753$
n-Hexyl bromide	-	$154 \cdot 6$	20	1-1746	1.4475	37-57	28.2	323.7	1.013
			25	$1 \cdot 1691$	-	-	$27 \cdot 65$	323.7	0.941
n-Heptyl bromide	-	69.5	20	$1 \cdot 1406$	1.4498	42-16	$28 \cdot 6$	$363 \cdot 0$	1.29
		(17 mm.)	25	$1 \cdot 1352$			$28 \cdot 1$	$363 \cdot 1$	$1 \cdot 19$
n-Octyl bromide	-	$202 \cdot 2$	20	$1 \cdot 1126$	$1 \cdot 4526$	46-86	$29 \cdot 1$	$403 \cdot 0$	$1 \cdot 64$
			25	$1 \cdot 1077$	-	-	28.6	$403 \cdot 0$	1.50
n-Hexadecyl bromide	$16 \cdot 3$	190	20	0.9992	$1 \cdot 4614$	$83 \cdot 87$	31.8	$725 \cdot 3$	$7 \cdot 81$
		(11 mm.)	25	0.9952		-	31.4	$725 \cdot 3$	6.75
Ethyl iodide	-	$72 \cdot 3$	20	1.9364	1.5130	$24 \cdot 21$	28.85	186.7	$0 \cdot 584$
			25	1.9253			$28 \cdot 2$	186.7	$0 \cdot 557$
n-Propyl iodide	-	102.5	20	1.7478	1.5051	28.85	29.2	$226 \cdot 1$	0.735
			25	1.7385		-	28.6	$226 \cdot 1$	0.695
n-Butyl iodide	-	$130 \cdot 2$	20	$1 \cdot 6150$	$1 \cdot 4999$	$33 \cdot 50$	29.25	$264 \cdot 9$	0.877
			25	1.6070		-	28.7	$265 \cdot 0$	0.826
n-Hexyl iodide	-	76.5	20	$1 \cdot 4391$	1.4926	$42 \cdot 79$	$30 \cdot 25$	345.5	$1 \cdot 39$
		(23 mm.)	25	$1 \cdot 4326$			29.75	$345 \cdot 7$	1.285
n-Hexadecyl iodide	$2 \mathbf{2} \mathbf{5}$	184	25	1-1220	1.4795	89.07	$32 \cdot 4$	748.9	$8 \cdot 43$
		(4 mm .)	30	$1 \cdot 1180$	-	-	$32 \cdot 0$	749.2	$7 \cdot 27$
Methylene chloride	-	$39 \cdot 8$	20	$1 \cdot 3283$	$1 \cdot 4233$	16.29	$28 \cdot 0$	$147 \cdot 1$	$0 \cdot 437$
			25	1.3191	-	-	$27 \cdot 15$	$147 \cdot 0$	$0 \cdot 416$
Chloroform	-	$61 \cdot 2$	20	1.4892	1.4458	21-36	$27 \cdot 2$	$183 \cdot 1$	0.566
			25	$1 \cdot 4798$	-	-	26.55	$183 \cdot 2$	0.538
Carbon tetrachloride	-	76.75	20	1.5942	14603	$26 \cdot 47$	26.75	219.5	0.968
			25	1.5846		-	$26 \cdot 15$	219.6	0.902
1: 2-Dichloroethane	-	$83 \cdot 6$	20	$1 \cdot 2527$	1.4448	$21 \cdot 02$	$32 \cdot 45$	188.5	$0 \cdot 829$
			25	1.2454	-	-	31.75	188.6	0.775

Results (continued).									
Compound.	F. p.	B. p. (760 mm . except where stated).	t.	$d_{4}^{\text {t }}$.	$n_{\text {d }}$	$\left.{ }^{2}\right]_{\text {d }}$.	Surface tension (dynes/ cm.).	Parachor.	Viscosity (centipoises).
1:3-Dichloropropane	-	120.8°	$\begin{aligned} & 20^{\circ} \\ & 25 \end{aligned}$	$\begin{aligned} & 1 \cdot 1859 \\ & 1 \cdot 1800 \end{aligned}$	$1 \cdot 4483$	$25 \cdot 52$	$\begin{aligned} & 33 \cdot 8 \\ & 33 \cdot 05 \end{aligned}$	$\begin{aligned} & 229 \cdot 7 \\ & 229 \cdot 6 \end{aligned}$	$\begin{aligned} & 1.034 \\ & 0.963 \end{aligned}$
1:4-Dichlorobutane	-	$155 \cdot 0$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1 \cdot 1408 \\ & 1 \cdot 1353 \end{aligned}$	1.4549	$30 \cdot 20$	$\begin{aligned} & \mathbf{3 4} \cdot 8 \\ & \mathbf{3 4} \cdot \mathbf{0 5} \end{aligned}$	$\begin{aligned} & 270 \cdot 4 \\ & 270 \cdot 2 \end{aligned}$	$\begin{aligned} & 1.43 \\ & 1.315 \end{aligned}$
1:5-Dichloropentane	-	$182 \cdot 0$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1 \cdot 1006 \\ & 1 \cdot 0956 \end{aligned}$	1.4566	34•87	$\begin{aligned} & 35 \cdot 3 \\ & 34 \cdot 6 \end{aligned}$	$\begin{aligned} & 312 \cdot 3 \\ & 312 \cdot 1 \end{aligned}$	$\begin{aligned} & 1.815 \\ & 1.655 \end{aligned}$
Ethylidene dichloride	-	$57 \cdot 3$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1 \cdot 1757 \\ & 1 \cdot 1680 \end{aligned}$	1.4167	21-15	$\begin{aligned} & 24 \cdot 75 \\ & 24 \cdot 1 \end{aligned}$	$\begin{aligned} & 187.7 \\ & 187.7 \end{aligned}$	$\begin{aligned} & 0 \cdot 490 \\ & 0 \cdot 465 \end{aligned}$
1:1:2-Trichloroethane	-	$114 \cdot 1$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1.4424 \\ & 1.4355 \end{aligned}$	$1 \cdot 4715$	$25 \cdot 87$	$\begin{aligned} & 33 \cdot 75 \\ & 33 \cdot 0 \end{aligned}$	$\begin{aligned} & 222.9 \\ & 222.7 \end{aligned}$	$\begin{aligned} & 1 \cdot 19 \\ & 1 \cdot 10 \end{aligned}$
1:1:2:2-Tetrachloroethane	-	146.1	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1.5953 \\ & 1.5876 \end{aligned}$	1.4940	$30 \cdot 62$	$\begin{aligned} & 35 \cdot 6 \\ & 34 \cdot 9 \end{aligned}$	$\begin{aligned} & 256.9 \\ & 256.9 \end{aligned}$	$\begin{aligned} & 1.765 \\ & 1.615 \end{aligned}$
1:1:1:2:2-Pentachloroethane	-	160.5	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1.6813 \\ & 1.6740 \end{aligned}$	$1 \cdot 5030$	$35 \cdot 57$	$\begin{aligned} & 34 \cdot 55 \\ & 33 \cdot 85 \end{aligned}$	$\begin{aligned} & 291 \cdot 7 \\ & 291.5 \end{aligned}$	$\begin{aligned} & 2 \cdot 58 \\ & 2 \cdot 23 \end{aligned}$
1:2:3-Trichloropropane	-	$156 \cdot 0$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1.3880 \\ & 1.3818 \end{aligned}$	1.4834	$30 \cdot 35$	$\begin{aligned} & 37 \cdot 8 \\ & 37 \cdot 05 \end{aligned}$	$\begin{aligned} & 263 \cdot 3 \\ & 263 \cdot 2 \end{aligned}$	$\begin{aligned} & 2 \cdot 505 \\ & 2 \cdot 23 \end{aligned}$
1: 2-Dichloroethylene,	-	$48 \cdot 4$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1.2583 \\ & 1.2502 \end{aligned}$	二	-	$\begin{aligned} & 26 \cdot 4 \\ & 25 \cdot 8 \end{aligned}$	$\begin{aligned} & 174 \cdot 6 \\ & 174 \cdot 7 \end{aligned}$	$\begin{aligned} & 0 \cdot 423 \\ & 0 \cdot 400 \end{aligned}$
1: 2-Dichloroethylene,	-	$60 \cdot 1$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1.2841 \\ & 1.2771 \end{aligned}$	二	-	$\begin{aligned} & 28 \cdot 3 \\ & 27 \cdot 65 \end{aligned}$	$\begin{aligned} & 174 \cdot 1 \\ & 174 \cdot 0 \end{aligned}$	$\begin{aligned} & 0 \cdot 474 \\ & 0 \cdot 451 \end{aligned}$
Trichloroethylene	-	$86 \cdot 9$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1.4642 \\ & 1.4559 \end{aligned}$	1.4775	25.38	$\begin{aligned} & 29.5 \\ & 28.8 \end{aligned}$	$\begin{aligned} & 209 \cdot 1 \\ & 209 \cdot 1 \end{aligned}$	$\begin{aligned} & 0.566 \\ & 0.532 \end{aligned}$
Perchloroethylene	-	$121 \cdot 2$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1.6230 \\ & 1.6145 \end{aligned}$	1.5055	$30 \cdot 33$	$\begin{aligned} & 32 \cdot 1 \\ & 31 \cdot 4 \end{aligned}$	$\begin{aligned} & 243 \cdot 2 \\ & 243 \cdot 2 \end{aligned}$	$\begin{aligned} & 0.891 \\ & 0.842 \end{aligned}$
1: 2-Dibromoethane	-	$131 \cdot 1$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 2 \cdot 1802 \\ & 2 \cdot 1700 \end{aligned}$	1.5385	26.98	$\begin{aligned} & 38 \cdot 85 \\ & 38 \cdot 2 \end{aligned}$	$\begin{aligned} & 215 \cdot 1 \\ & 215 \cdot 2 \end{aligned}$	$\begin{aligned} & 1.73 \\ & 1.60 \end{aligned}$
1:3-Dibromopropane	-	$166 \cdot 2$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1.9812 \\ & 1.9727 \end{aligned}$	1.5230	31-13	$\begin{aligned} & 40 \cdot 1 \\ & 39 \cdot 4 \end{aligned}$	$\begin{array}{r} 256 \cdot 4 \\ 256 \cdot 4 \end{array}$	$\begin{aligned} & 2.07 \\ & 1.90 \end{aligned}$
Ethyl n-butyl ether	-	$92 \cdot 0$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.7495 \\ & 0.7448 \end{aligned}$	1.3820	31.71	$\begin{aligned} & 20.75 \\ & 20.25 \end{aligned}$	$\begin{aligned} & 290 \cdot 8 \\ & 290 \cdot 8 \end{aligned}$	$\begin{aligned} & 0 \cdot 421 \\ & 0.397 \end{aligned}$
Ethyl n-hexadecyl ether	$19.9{ }^{\circ}$	$\begin{gathered} 195 \\ \text { (21 mm.) } \end{gathered}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.8182 \\ & 0.8150 \end{aligned}$	1-4394	86.96	$\begin{aligned} & 29.4 \\ & 28.95 \end{aligned}$	$\begin{aligned} & 769 \cdot 3 \\ & 769 \cdot 3 \end{aligned}$	$\begin{aligned} & 6 \cdot 12 \\ & 5 \cdot 25 \end{aligned}$
Methyl 2-chloroethyl ether	-	$90 \cdot 3$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1.0522 \\ & 1.0461 \end{aligned}$	$1 \cdot 4108$	$22 \cdot 30$	$\begin{aligned} & 29.25 \\ & 28 \cdot 5 \end{aligned}$	$\begin{aligned} & 208 \cdot 9 \\ & 208 \cdot 7 \end{aligned}$	$\begin{aligned} & 0.633 \\ & 0.591 \end{aligned}$
2-Chlorodiethyl ether	-	108.4	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.9954 \\ & 0.9894 \end{aligned}$	$1 \cdot 4118$	27-12	$\begin{aligned} & 27 \cdot 45 \\ & 26 \cdot 9 \end{aligned}$	$\begin{aligned} & 249 \cdot 6 \\ & 249 \cdot 8 \end{aligned}$	$\begin{aligned} & 0.730 \\ & 0.677 \end{aligned}$
$\begin{aligned} & \text { 1: 2-Dichlorodiethyl } \\ & \text { ether } \end{aligned}$	-	$\begin{gathered} 51 \\ (27 \mathrm{~mm} .) \end{gathered}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1 \cdot 1670 \\ & 1 \cdot 1610 \end{aligned}$	$1 \cdot 4418$	$32 \cdot 40$	$\begin{aligned} & 29 \cdot 8 \\ & 29 \cdot 1 \end{aligned}$	$\begin{aligned} & 286 \cdot 2 \\ & 286 \cdot 0 \end{aligned}$	$\begin{aligned} & 1.285 \\ & 1.165 \end{aligned}$
2: ${ }^{2}$ ether	-	177.9	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1.2192 \\ & 1.2130 \end{aligned}$	1.4573	31.95	$\begin{aligned} & 37 \cdot 6 \\ & 37 \cdot 0 \end{aligned}$	$\begin{aligned} & 290.4 \\ & 290.7 \end{aligned}$	$\begin{aligned} & 2 \cdot 41 \\ & 2 \cdot 14 \end{aligned}$
1:2:2-Trichlorodiethyl ether	-	$\begin{gathered} 62 \\ (13 \mathrm{~mm} .) \end{gathered}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1 \cdot 3227 \\ & 1.3155 \end{aligned}$	$1 \cdot 4648$	$37 \cdot 07$	$\begin{aligned} & 32 \cdot 8 \\ & 32 \cdot 2 \end{aligned}$	$\begin{aligned} & 321 \cdot 0 \\ & 321 \cdot 3 \end{aligned}$	$\begin{aligned} & 2 \cdot 46 \\ & 2 \cdot 18 \end{aligned}$
1:2:2:2:2'-Pentachlorodiethyl ether	-	$\begin{gathered} 112.5 \\ (12.5 \mathrm{~mm} .) \end{gathered}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{array}{r} 1.5733 \\ 1.5669 \end{array}$	1.5025	$46 \cdot 25$	$\begin{aligned} & 38 \cdot 9 \\ & 38 \cdot 3 \end{aligned}$	$\begin{aligned} & 391 \cdot 1 \\ & 391 \cdot 0 \end{aligned}$	$\begin{aligned} & 9 \cdot 36 \\ & 7 \cdot 83 \end{aligned}$
Ethyl formate	-	$54 \cdot 3$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.9237 \\ & 0.9173 \end{aligned}$	$1 \cdot 3599$	$17 \cdot 69$	$\begin{aligned} & 23 \cdot 8 \\ & 23 \cdot 15 \end{aligned}$	$\begin{aligned} & 177 \cdot 1 \\ & 177 \cdot 1 \end{aligned}$	$\begin{aligned} & 0 \cdot 402 \\ & 0.382 \end{aligned}$
Ethyl acetate	-	$77 \cdot 15$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.9007 \\ & 0.8946 \end{aligned}$	$1 \cdot 3728$	22.26	$\begin{aligned} & 23 \cdot 95 \\ & 23 \cdot 3 \end{aligned}$	$\begin{aligned} & 216 \cdot 3 \\ & 216.3 \end{aligned}$	$\begin{aligned} & 0.452 \\ & 0.425 \end{aligned}$
Ethyl butyrate	-	121.4	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.8794 \\ & 0.8742 \end{aligned}$	$1-3922$	31.45	$\begin{aligned} & 24 \cdot 6 \\ & 24 \cdot 0 \end{aligned}$	$\begin{aligned} & 294 \cdot 1 \\ & 294 \cdot 0 \end{aligned}$	$\begin{aligned} & 0.672 \\ & 0.627 \end{aligned}$
Ethyl valerate	-	$145 \cdot 1$	$\begin{gathered} 20 \\ 25 \end{gathered}$	$\begin{aligned} & 0 \cdot 8750 \\ & 0.8703 \end{aligned}$	1.4005	36.09	$\begin{aligned} & 25 \cdot 4 \\ & 24 \cdot 85 \end{aligned}$	$\begin{aligned} & 333 \cdot 8 \\ & 333 \cdot 8 \end{aligned}$	$\begin{aligned} & 0.821 \\ & 0.763 \end{aligned}$
Ethyl hexoate	-	$167 \cdot 0$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.8717 \\ & 0.8672 \end{aligned}$	1.4072	40.72	$\begin{aligned} & 26 \cdot 0 \\ & 25 \cdot 45 \end{aligned}$	$\begin{aligned} & \mathbf{3 7 3 \cdot 4} \\ & \mathbf{3 7 3 \cdot 3} \end{aligned}$	$\begin{aligned} & 1.024 \\ & 0.948 \end{aligned}$
Ethyl octoate	-	$207 \cdot 0$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.8676 \\ & 0.8635 \end{aligned}$	1.4180	$50 \cdot 01$	$\begin{aligned} & 27 \cdot 2 \\ & 26 \cdot 75 \end{aligned}$	$\begin{array}{r} 453 \cdot 2 \\ 453 \cdot 4 \end{array}$	$\begin{aligned} & 1.58 \\ & 1.44 \end{aligned}$

Compound.
Ethyl nonoate
Ethyl laurate
Ethyl myristate
Ethyl palmitate
Ethyl margarate
Methyl acetate
n-Propyl acetat
n-Butyl acetate
isoButyl acetate
n-Amyl acetat
n-Hexyl acetate
n-Octyl acetat
n-Hexadecyl acetate
Ethyl malonate
Ethyl succinat
Ethyl adipat
Ethyl suberat
Ethyl azelat
Ethyl sebacat

Ethyl ethylmalonate	-	208.2	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1.0082 \\ & 1.0037 \end{aligned}$	$1 \cdot 4164$	$46 \cdot 86$	$\begin{aligned} & 29 \cdot 8 \\ & 29 \cdot 1 \end{aligned}$	$\begin{aligned} & \mathbf{4 3 6} \cdot 0 \\ & \mathbf{4 3 5 \cdot 4} \end{aligned}$	$\begin{aligned} & 2.41 \\ & 2.15 \end{aligned}$
Ethyl n-butylmalonate	-	$239 \cdot 0$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.9749 \\ & 0.9703 \end{aligned}$	1.4226	$56 \cdot 42$	$\begin{aligned} & 29 \cdot 1 \\ & 28 \cdot 55 \end{aligned}$	$\begin{aligned} & 515.0 \\ & 515.0 \end{aligned}$	$\begin{aligned} & 3 \cdot 47 \\ & 3 \cdot 02 \end{aligned}$
Ethyl n-hexadecylmalonate	$\begin{aligned} & a 12 \cdot 7 \\ & \beta 25 \cdot 1 \end{aligned}$	$\begin{gathered} 241 \\ (9.5 \mathrm{~mm} .) \end{gathered}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.9118 \\ & 0.9080 \end{aligned}$	1.4443	$112 \cdot 04$	$\begin{aligned} & 31.45 \\ & 30.95 \end{aligned}$	$\begin{aligned} & 998 \cdot 3 \\ & 998 \cdot 4 \end{aligned}$	$\begin{aligned} & 18 \cdot 2 \\ & 14.9 \end{aligned}$
Ethyl benzoate	-	212.2	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1.0468 \\ & 1.0421 \end{aligned}$	1.5051	$41 \cdot 56$	$\begin{aligned} & 35 \cdot 4 \\ & 34 \cdot 75 \end{aligned}$	$\begin{aligned} & 349 \cdot 7 \\ & 349 \cdot 7 \end{aligned}$	$\begin{aligned} & 2.22 \\ & 1.99 \end{aligned}$
Ethyl chloroformate	-	$\mathbf{9 2} \cdot 6$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1 \cdot 1392 \\ & 1 \cdot 1325 \end{aligned}$	$1 \cdot 3952$	$22 \cdot 84$	$\begin{aligned} & 26 \cdot 1 \\ & 25 \cdot 45 \end{aligned}$	$\begin{aligned} & 215 \cdot 3 \\ & 215 \cdot 2 \end{aligned}$	$\begin{aligned} & 0.557 \\ & 0.528 \end{aligned}$
Methyl chloroacetate	-	129.6	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1.2345 \\ & 1.2281 \end{aligned}$	1.4214	22.31	$\begin{aligned} & 35 \cdot 2 \\ & 34 \cdot 5 \end{aligned}$	$\begin{aligned} & 214 \cdot 1 \\ & 214 \cdot 1 \end{aligned}$	$\begin{aligned} & 1.143 \\ & 1.048 \end{aligned}$
Ethyl chloroacetate	-	143.1	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1 \cdot 1510 \\ & 1 \cdot 1446 \end{aligned}$	1.4212	$27 \cdot 00$	$\begin{aligned} & 32 \cdot 0 \\ & 31 \cdot 35 \end{aligned}$	$\begin{aligned} & 253 \cdot 2 \\ & 253 \cdot 3 \end{aligned}$	$\begin{aligned} & 1 \cdot 194 \\ & 1.096 \end{aligned}$
n-Propyl chloroacetate	-	162.9	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1 \cdot 1038 \\ & 1 \cdot 0977 \end{aligned}$	1.4253	31.65	$\begin{aligned} & 30.95 \\ & 30 \cdot 35 \end{aligned}$	$\begin{aligned} & 291.7 \\ & 291.9 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 1.365 \end{aligned}$
n-Butyl chloroacetate	-	181.7	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 1 \cdot 0707 \\ & 1.0652 \end{aligned}$	1.4291	$36 \cdot 26$	$\begin{aligned} & 30 \cdot 4 \\ & 29 \cdot 8 \end{aligned}$	$\begin{aligned} & 330 \cdot 2 \\ & 330 \cdot 2 \end{aligned}$	$\begin{aligned} & 1.71 \\ & 1.55 \end{aligned}$

Results (continued).									
Compound. Methyl dichloroacetate	F.p.	B. p. (760 mm . except where stated). 143.9°	$\begin{aligned} & t . \\ & 20^{\circ} \\ & 25 \end{aligned}$	$\begin{gathered} d_{4}^{t} \\ 1 \cdot 3786 \\ 1 \cdot 3712 \end{gathered}$	$\begin{gathered} n_{\mathrm{D}}^{\mathrm{t}} \\ 1 \cdot 4424 \end{gathered}$	$[R]_{\mathbf{D}}$.	Surface tension (dynes/ cm .).	Parachor.	Viscosity (centipoises)
						$27 \cdot 46$	$34 \cdot 0$	$250 \cdot 4$	1.546
						-	$33 \cdot 25$	$250 \cdot 4$	$1 \cdot 414$
Ethyl dichloroacetate	-	157.3	20	$1 \cdot 2804$	1.4375	$32 \cdot 15$	31.35	$290 \cdot 1$	1.60
			25	$1 \cdot 2734$			30.75	$290 \cdot 3$	$1 \cdot 46$
n-Propyl dichloroacetate		175•7	20	$1 \cdot 2234$	1.4402	$36 \cdot 85$	$30 \cdot 65$	328.9	1.91
			25	1.2171			$30 \cdot 1$	$329 \cdot 1$	1.74
n-Butyl dichloroacetate	-	$194 \cdot 8$	20	1-1841	$1 \cdot 4420$	41-34	30-1	366.0	$2 \cdot 20$
			25	$1 \cdot 1783$			$29 \cdot 5$	365.9	1.98
Methyl trichloroacetate	-	153.4	20	$1 \cdot 4870$	1.4565	$32 \cdot 46$	$33 \cdot 0$	286.0	1.85
			25	$1 \cdot 4800$			$32 \cdot 3$	285.8	$1 \cdot 69$
Ethyl trichloroacetate	-	$167 \cdot 3$	20	$1 \cdot 3841$	$1 \cdot 4501$	37-17	$30 \cdot 8$	325.8	1.72
			25	$1 \cdot 3773$		-	$30 \cdot 2$	$325 \cdot 8$	$1 \cdot 57$
n-Propyl trichloroacetate	-	185.5	20	1.3187	$1 \cdot 4507$	41.93	$30 \cdot 6$	$366 \cdot 4$	$2 \cdot 04$
			25	$1 \cdot 3123$			30.05	$366 \cdot 5$	1.86
n-Butyl trichloroacetate	-	$206 \cdot 0$	20	$1 \cdot 2736$	1.4514	$46 \cdot 43$	30.55	$405 \cdot 1$	$2 \cdot 38$
			25	1-2674			$30 \cdot 0$	$405 \cdot 2$	$2 \cdot 14$
2-Chloroethyl acetate	-	$145 \cdot 1$	20	$1 \cdot 1556$	$1 \cdot 4230$	27-02	$33 \cdot 6$	$255 \cdot 3$	1.61
			25	1-1492		-	32.9	$255 \cdot 5$	$1 \cdot 46$
2-Chloroethyl chloroacetate	-	$202 \cdot 7$	20	$1 \cdot 3584$	$1 \cdot 4624$	31.79	41.5	$293 \cdot 3$	$4 \cdot 27$
			25	$1 \cdot 3520$			$40 \cdot 8$	293.4	$3 \cdot 73$
2-Chloroethyl dichloroacetate	-	213.0	20	1.4570	$1 \cdot 4738$	36.91	$39 \cdot 8$	$330 \cdot 0$	$5 \cdot 09$
			25	1.4504			$39 \cdot 1$	$330 \cdot 0$	$4 \cdot 41$
2-Chloroethyl trichloroacetate	-	$217 \cdot 5$	20	$1 \cdot 5329$	$1 \cdot 4805$	41.90	37-3	364-1	$5 \cdot 43$
			25	1-5262	-	-	$36 \cdot 6$	364-0	$4 \cdot 70$
Ethyl β-chloropropionate	-	162.4	20	1-1044	1.4253	$31 \cdot 63$	$31 \cdot 65$	293.2	1.625
			25	$1 \cdot 0994$	-	-	$31 \cdot 1$	293.3	1.48
Diethyl sulphide	-	92-1	20	$0 \cdot 8367$	1.4425	28.47	$25 \cdot 3$	$241 \cdot 6$	$0 \cdot 446$
			25	0.8316			$24 \cdot 7$	$241 \cdot 6$	$0 \cdot 422$
Di-n-butyl sulphide	-	$188 \cdot 1$	20	0.8388	1.4525	$47 \cdot 07$	27.35	398.6	1.072
			25	0.8348			26.8	398.5	0.995
Diisobutyl sulphide	-	$170 \cdot 0$	20	0.8285	1.4471	$47 \cdot 16$	$25 \cdot 1$	395.0	0.944
			25	0.8244			$24 \cdot 6$	$395 \cdot 0$	$0 \cdot 880$
Diisoamyl sulphide	-	215-3	20	0.8341	$1 \cdot 4531$	$56 \cdot 48$	26.3	$473 \cdot 0$	1.525
			25	0.8303		-	$25 \cdot 85$	$473 \cdot 2$	1.395
2-Chlorodiethyl	-	$\begin{gathered} 59 \\ (20 \mathrm{~mm} .) \end{gathered}$	20	1.0758	1.4898	$33 \cdot 47$	$33 \cdot 1$	$277 \cdot 8$	-
2: 2'-Dichlorodiethyl sulphide	$14.4{ }^{\circ}$	$\begin{gathered} 107 \\ (15 \mathrm{~mm} .) \end{gathered}$	20	1.2746	1.5270	$38 \cdot 36$	$42 \cdot 7$	$319 \cdot 0$	$4 \cdot 3$
2-Chloroethyl 1:2-dichlorovinyl sulphide	-	$\begin{gathered} 107 \\ (15 \mathrm{~mm} .) \end{gathered}$	20	$1 \cdot 4315$	1.5562	$43 \cdot 01$	$40 \cdot 9$	338.3	$2 \cdot 8$
2-Chloroethyl 1:2:2-trichlorovinyl sulphide	-	$\begin{gathered} 123 \\ (15 \mathrm{~mm} .) \end{gathered}$	20	1.5425	1.5700	$48 \cdot 06$	$41 \cdot 7$	$372 \cdot 3$	$3 \cdot 9$
1:1:2-Trichloroethyl 2 -chlorovinyl sulphide	-	$\begin{aligned} & 122.5 \\ & (15 \mathrm{~mm} .) \end{aligned}$	20	$1 \cdot 5404$	1.5661	47-85	$41 \cdot 7$	$372 \cdot 8$	$5 \cdot 7$
1:2:2-Trichloroethyl 1: 2-dichlorovinyl sulphide	-	$\begin{gathered} 134 \cdot 5 \\ (15 \mathrm{~mm} .) \end{gathered}$	20	$1 \cdot 6293$	$1-5778$	53.02	$41 \cdot 8$	$406 \cdot 2$	$6 \cdot 5$
1:1:2:2:2:2'-Hexachlorodiethyl sulphide	-	$\begin{gathered} 158.5 \\ (15 \mathrm{~mm} .) \end{gathered}$	20	1-6849	1.5683	57.66	$43 \cdot 45$	$452 \cdot 6$	$25 \cdot 4$
$1: 1: 1^{\prime}: 2: 2^{\prime}: 2^{\prime}$-Hexachlorodiethyl sulphide	-	$\begin{gathered} 159 \cdot 5 \\ (15 \mathrm{~mm} .) \end{gathered}$	20	1-6841	1.5681	57.68	$43 \cdot 35$	$452 \cdot 5$	$29 \cdot 4$
1:1:1':2:2:2': 2^{\prime} Heptachlorodiethyl sulphide	-	$\stackrel{171}{(15 \mathrm{~mm} .)}$	20	1.7473	$1 \cdot 5741$	62.58	43.2	$486 \cdot 1$	42•7
n-Butyl cyanide	-	141	20	0.7993	1.3975	$25 \cdot 06$	27.6	$238 \cdot 3$	0.753
			25	0.7952		-	$27 \cdot 1$	238.4	0.705
n-Hexadecyl cyanide	31.7	195	30	0.8284	1.4431	$80 \cdot 44$	31.35	717.8	7.65
		(8 mm .)	35	$0 \cdot 8254$	-	-	$30 \cdot 85$	717.5	6.55

Discussion.

The results obtained, given in the accompanying table, agree in general with those of other workers, and in particular with the recent data of Timmermans and his collaborators (J.Chim. physique, 1926, 23, 747; 1928, 25, 411; 1930, 27, 401; 1932, 29, 529; 1934, 31, 85; 1935, 32, 501,589 ; 1937, 34, 693 ; cf. Roland and Lek, Bull. Soc. chim. Belg., 1931, 40, 177) and of Vogel ($J ., 1934,333 ; 1943,16,637$; 1946, 133 ; 1948, 607 et seq., 1804 et seq.).

The only marked discrepancies occur with the surface tensions of the $\mathrm{C}_{6}-\mathrm{C}_{8}$ alcohols, and one or two other liquids of high viscosity, where the capillary rise method used by these workers appears to give low and erratic results. The discontinuity in surface tension at C_{7} in the alcohol series noted by Smith and Sorg (J. Physical Chem., 1941, 45, 671) has not been confirmed.

In view of the incompleteness of the investigation, and of the recent extensive work of Vogel in the same field, little useful purpose would be served by detailed analysis of the results now reported. A few points, however, merit brief discussion.

First, as regards the CH_{2} parachor increment: The present measurements of parachor increase from C_{4} to C_{16} in nine different aliphatic series support a mean increment of 40 units originally advocated in our earlier paper and now accepted by Vogel on the basis of his own data. It must, however, be appreciated that this is a representative average value, and that owing to slight variation of the exponent in the Kleeman-MacLeod relation, $\gamma=C(D-d)^{4}$, from compound to compound, the observed increment in any given case depends both on the temperature range of measurement, and on the particular series being examined and the number of terms considered. The parachor is, in fact, not strictly a constant, and only approximately homologously additive.

The atomic and group constants previously evaluated on the basis of this increment reproduce satisfactorily the parachor data now reported, and would not therefore appear to require significant modification. Such constants are, not unnaturally, much the same as those recently put forward by Vogel on the same basis, as will be seen from the subjoined tabular summary of the more important values.
P value.

P value.

M. \& P. $=$ Mumford and Phillips $J ., 1929,2112$ (Table I).

$$
\text { V. } \quad=\text { Vogel, } J ., 1948,1833 \text { (Table XXII). }
$$

In the case of many atoms and groups (e.g., halogen, ethereal oxygen, cyanogen, etc.) the two sets of constants are indeed virtually identical, though with certain of the more complex groupings (e.g., phenyl, CO•O in esters) they differ by one or more units. Vogel's values are based on much more extensive data, but any resulting gain in accuracy would appear to be largely offset by the circumstance that each group value has been independently evaluated, and cannot be quantitatively computed by summation of its component atomic and structural constants. This applies, rather illogically, to the lower alkyl groups themselves in Vogel's system, in which the successive CH_{2} differences from methyl to octyl are given as $40,39 \cdot 9,39 \cdot 8$, $39 \cdot 7,40,40 \cdot 7$, and 40 , respectively, one curious result of this being that the calculated parachor of, say, n-hexane, varies according to whether it is considered as n-hexyl $+\mathrm{H}(270 \cdot 7)$, n-amyl + methyl (270.4), n-butyl + ethyl (270.7), di-n-propyl (271.0), $4 \mathrm{CH}_{2}+2$ methyl $(270 \cdot 8)$, or $6 \mathrm{CH}_{2}+2 \mathrm{H}(271 \cdot 4)$.

The decrement of 3 units previously noted as applying to branched-chain groups of the type $-\mathrm{CHR}_{2}$ receives support from the parachors of the few iso-compounds now reported, and it is interesting to note in this connection that according to Vogel the parachor values of isoand sec.-alkyl groups range from $1 \cdot 5$ (isobutyl) to $4 \cdot 1$ (sec.-butyl) units lower than those of the corresponding n-groups.

The well-defined parachor defect associated with accumulation of negative atoms and groups (X) around a central carbon atom would appear to depend to a rather greater extent than was originally surmised on the size and polarity of the atoms and groups concerned, but the parachors now reported, and other recently recorded data, confirm in general the earlier conclusion that for $\mathrm{X}=\mathrm{Cl}, \mathrm{OEt}, \mathrm{CO}_{2} \mathrm{Et}$, and for similar groups the decrement (" strain constant ") associated with $-\mathrm{CHX}_{2}$ groups may be taken as 3 units, with $-\mathrm{CX}_{3}$ groups 6 units, and with compounds of the type $\mathrm{CX}_{4} 9$ units, within the limits of experimental error; and further, that for such atoms and groups the more complex effect of accumulation on adjacent carbon atoms can be adequately estimated in the manner previously outlined. The depressive effect of negative accumulation on the parachor has been recognised by Vogel in his latest paper (loc. cit.), but qualitatively only, and apparently without full appreciation of its applicability, for example, to esters ${ }^{-} \mathrm{C}_{\mathrm{S}_{0}^{-}}^{\mathrm{O}^{-}}$as in acetals ${ }^{-} \mathrm{CH}<\mathrm{O}^{-}$, and of its occurrence to a varying extent in the chlorides and oxychlorides of phosphorus and sulphur, and in many of the esters of the inorganic acids (cf. Table VIII in our original paper).

The general validity of parachors calculated in accordance with the scheme outlined in that table has received additional support from the measurements of Pearson and Robinson (J., 1933,1427) on sulphur hexafluoride, and of Denbigh and Whytlaw-Grey ($J ., 1934,1346$) on disulphur decafluoride. In both cases, allowing a "strain constant," due to accumulation, of - 15 units per S^{vi} atom, and assuming that the valencies of the latter comprise two co-valent bonds and four " singlet " linkages, the values obtained for the latter linkage ($-11 \cdot 2$ and $-11 \cdot 1$, respectively) agree closely with similar values derived from other compounds, e.g., tellurium tetrachloride (-11.4 ; Simons, J. Amer. Chem. Soc., 1930, 52, 3488; with $\mathrm{Te}=79$) and phosphorus pentachloride ($-10 \cdot 5$; Sugden, J., 1927, 1173). The "strain constant" would here appear to connote the screening effect of the surrounding halogens on the central atom, and to be distinct from the defect attributed, following Sugden, to "singlet" linkages, which is presumably connected with the formation of bonds involving inner electron orbits.

The need for assuming the presence of such linkages in compounds of this type, and of semipolar double (" dative "') bonds in the corresponding oxyhalides and esters, can to some extent be avoided by assigning different parachor values to the central atom in its different valency
states (cf. previous paper, p. 2125; also Sippel, Ber., 1930, 63, B, 2185; Buehler, J. Tennessee Acad. Sci., 1931, 6, 27; Hunter and Samuel, Rec. Trav. chim., 1935, 54, 114). This procedure, however, does not eliminate the depressive effect of accumulation, and moreover leads to inconsistent and improbable atomic values for the elements concerned in their higher valencies. Thus, according to Samuel (J. Chem. Physics, 1944, 12, 167) the atomic parachor of P^{v} is $18 \cdot 3$ in POCl_{3}, though only 11.0 in PCl_{5}, whilst that for S^{vi}, given as +13.9 in $\mathrm{SO}_{2} \mathrm{Cl}_{2}$, is, on the same basis (using Sugden's value of 25 for F), -6.7 in SF_{6}. So far as concerns the "dative" bond, Vogel's conclusion that parachor data provide no evidence for the presence of co-valent double bonds in the esters and oxyhalides of sulphur and phosphorus, as maintained by G. M. Phillips, Hunter, and Sutton ($J ., 1945,146$), would appear to be well-founded (cf. Wells, $J ., 1949,55$).

The view previously advanced, that the effective parachor value of the hydrogen atom depends inversely on the electron affinity of the atom to which it is attached, has been discussed in some detail by Pearson and Robinson ($J ., 1934,736$) and supported and extended by their measurements of the parachors of the non-metallic hydrides (J., 1932, 972; 1934, 730, 880). Confirmation of the lower parachor value of H in OH groups has also been afforded by Vogel for alcohols and acids ($J ., 1948,1814$), though attributed by him to variation in the parachor of the oxygen atom.

In the light of modern views on structure, a number of the interpretations of deviations from parachor additivity suggested in our previous paper require some modification, and the atomic and structural constants then put forward could doubtless be more precisely evaluated with the aid of the very considerable additional data now available. Taking the system as originally advanced twenty years ago, however, it may be noted that, of the 690 parachor values recorded by Vogel since Part I of his present series ($J ., 1934,333$), the difference between calculated (Mumford and Phillips) and observed parachors exceeds 2% in only 23 instances (i.e., 3% of the total), whilst for over 80% of the compounds the agreement is within 1%.

Direct comparison with Vogel's system is not possible for the whole of this series, as his method of computation is not at present applicable to many of the complex esters, etc., considered in his earlier papers. Of more than six hundred compounds listed since Part VII of the series ($J ., 1943,16$), however, only 63 are not computable by the atomic and group constants given by Vogel in his latest paper, these including, inter alia, tert.-butyl and amyl compounds, naphthalene derivatives, acetylenedicarboxylic esters, aromatic tert.-amines, and a variety of polyhalogenated compounds. Exclusion of these, and the few compounds for which surface tension data are not given, leaves 527 compounds of a wide variety of types, whose parachors can be evaluated by both systems; when this is done, the following comparative analysis of results is obtained.

Percentage of compounds for which the difference between calc. and obs. parachors is System of evaluation. Within 0.5% Within 1% Above 2\%.
Vogel's data (527 compounds).

$88.7 \quad 2 \cdot 1$
Mumford and Phillips 52.9
$85 \cdot 5$
1.7

It will be seen that the overall agreement is not very different in the two cases, although Vogel's system gives somewhat closer reproducibility with a greater number of compounds. This is not surprising in view of the circumstance that his constants were derived exclusively from the data to which they are now applied. In the following table a similar comparison is made with parachor data from the measurements of Timmermans and his collaborators (loc. cit.) and from the determinations reported in this paper, excluding in both instances such multibranched and polyhalogenated compounds as cannot at present be evaluated by Vogel's system.

	Percentage of compounds for which the difference between calc. and obs. parachors is		
System of evaluation.	Within 0.5%.	Within 1%.	Above 2\%.
Timmerman's data (126 compounds).			
Vogel	$54 \cdot 8$	$79 \cdot 4$	$5 \cdot 5$
Mumford and Phillips	$54 \cdot 0$	86.5	$3 \cdot 2$
Data from present paper (102 compounds).			
Vogel	$63 \cdot 7$	$89 \cdot 2$	$3 \cdot 0$
Mumford and Phillips	$63 \cdot 7$	96.0	1.0

The position is here somewhat different, the values calculated according to Vogel showing the smaller overall agreement. It would seem, therefore, that the employment of a multiplicity

84 Barker, Bourne, Wilkinson, and Peat: The Enzymic Synthesis

of independentlyevaluated and unrelated groupconstants is a refinement which over-estimates the precision of the parachor, and that there is much to be said for adhering to the scheme advocated in our original paper.

Part of this work was carried out at a Ministry of Supply Establishment, and the authors thank the Chief Scientist of the Ministry for permission to publish the data so obtained.

Farley.
[Received, July 1st, 1949.]

